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The need for high precision

Provides strong constraints on the SM and its extensions
Incredible success of the LEP, SLC Z-pole program

Extraction of MW , mt at the Tevatron

⇒ Precision EW data provides a vital experimental handle on new physics models

Become consistency checks, discriminators in presence of new physics

Precise predictions for signals, backgrounds

Measurements of NP parameters: masses, couplings

Needed in absence of clear NP effect



Experimental prospects

Great prospects for precision physics at hadron colliders
At the Tevatron

Each experiment has ≈ 220 pb−1 physics-ready data
Expect 2 − 3 fb−1 by LHC turn-on

∆mt = ±5GeV → ±(2.5 − 3)GeV

∆MW = ±60 MeV → ±(25 − 30) MeV

At the LHC
In 1 year at 10 fb−1: over 107 W, Z, tt̄ events ⇒ ∆σstat � 1%

Improved systematics (j, l energy scales) from high statistics samples
Reduction of luminosity error to 1 − 5%

⇒ Percent level physics at the LHC!

Talks by Dissertori, Huston, Wood at KITP conference on
Collider Physics



Precision QCD

Everything at hadron colliders involves QCD!

Observables in hadronic collisions

Nevents = L

∫

fi(x1, µ
2) fj(x2, µ

2) σij(x1, x2, µ
2)

Require
luminosity measurement

parton distribution functions

scattering cross sections



Components of a QCD calculation

Extract luminosity from well-measured, understood
processes

Total inelastic cross section at the Tevatron

W, Z cross sections at the LHC

⇒ Will quote NX = NW,Z

“

σX

σW,Z

”

th

Theory predictions must account for acceptances

Extract universal PDFs from experiment
DIS, jet production, fixed target Drell-Yan

Theory predictions must allow x dependence of f(x, µ2) to be reconstructed

Evolution of momentum scale µ requires DGLAP kernels:

d f(x, µ2)

d lnµ2
=

X

n=0

“ αS

4π

”n
P (n)(x) ⊗ f(x, µ2)



Cross sections in QCD

σ = σ0 {1 + αS (l + σ1) + α2
S (l2 + l + σ2) + O(α3

S)}

+αS

{

,

}

+α2
S

{

,

}

Strong coupling constant not small: αS(MZ) ≈ 0.12

⇒ higher order corrections important

Contains scales l = ln(µ2/Q2)
UV behavior: renormalization scale dependence (µR)

IR behavior: factorization scale dependence (µF )

Scales are arbitrary: dσ
dµ

= 0

⇒ but truncation of expansion at O(αn
S) induces a scale dependence of O(αn+1

S )

Residual scale dependences provide estimate of neglected higher order effects



From LO to NNLO

LO
No quantitative estimate of cross section

Few partonic channels open in initial state

⇒ poor estimate of kinematics, dependence on PDFs

Few partons in final state ⇒ poor modeling of jets

NLO
First quantitative estimate of cross section

Better modeling of kinematics, final-state structure

NNLO
Residual scale dependences small

Allows precision predictions



High precision theory

In the best of all possible worlds:

Scale variations:

• 35% at LO

• 5% at NLO

• < 1% at NNLO



Parton distribution functions



Parton distribution functions

Method of extraction
Choose a data set for a given process (DIS, Drell-Yan, jets)

Write theory prediction as a convolution of PDFs and hard scattering cross section, at a
given order

Extract PDFs, to the given order

Evolve to other Q2 with the DGLAP equation

Several different sets available: CTEQ, MRST, Alekhin, . . .
"NNLO" PDFs provided by MRST, Alekhin

Sources of error
In the evolution: DGLAP kernels not known to needed order in αS

In the fitting: experimental errors, imprecise hard scattering cross sections, . . .



DGLAP evolution

Full calculation of NNLO kernels recently completed
(Moch,Vermaseren,Vogt)
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• Corrections 5 − 10% for x < 10−3

• New ln4x LL stucture

• µ variation 1 − 2% for x > 10−3

< 8% for x < 10−3

• N3LO likely important for small x

Agrees with approximate result based on first few moments
"NNLO" PDFs of MRST, Alekhin likely okay for most phenomenological purposes



PDF errors

Recent efforts to estimate PDF errors on W,Z,H production
Variations within a PDF set are small

⇒ δσNNLO
W = ±4%, δσNNLO

H = ±3% for MRST, similar for Alekhin

Variations between sets larger

⇒ ≈ 15% for H production (Djouadi, Ferrag)
(at NLO, but quoted variations within set were ≈ 5 − 10%)

⇒ ≤ 8% for W, Z production at the LHC, at NNLO

In the future (?)
Use full NNLO kinematics for Drell-Yan cross section in fit (only inclusive K-factor)

Jet cross sections at NNLO

Add Drell-Yan to Alekhin (only DIS, others global)

Use LHC data to constrain



Progress in NLO calculations



Advances in NLO Phenomenology

Several studies of Higgs physics at the LHC
pp → tt̄H, bb̄H: Beenakker et. al.; Dawson et. al.

pp → jjH (WBF): Figy, Oleari, Zeppenfeld; Berger, Campbell

• K-factors vary with

kinematics

• Uncertainties:

WBF: ±6 − 10%

tt̄H: ±15 − 20%

No longer just discovery; detailed analysis of couplings, etc.



Extracting Higgs couplings

Measure HWW coupling with WBF (ATLAS; Berger, Campbell)

Signal: WBF Background: QCD Hjj

⇒ Higgs production now a background!

• Separate S, B with kinematics

• Uncertainty dominated by δS/S, δB/B

δB/B = ±20%, δS/S = ±4% (ATLAS)

δB/B = ±30%, δS/S = ±10% (BC)

• Estimate δg/g ≈ 10% after 200 fb−1 (BC)

• Background known only at LO

⇒ need NLO computation of QCD Hjj production



Wishful thinking

Missing many needed NLO computations Campbell



Wishful thinking

Missing many needed NLO computations Campbell



Computing cross sections at NLO

Two components of an NLO calculation:

Real: Virtual:

Obtain a cross section in the form:

σNLO =
R

dΦn (σB + αSσvirt) + αS

R

dΦn+1σreal

Dealing with divergences
UV: cancel with coupling constant renormalization

IR: typically use dipole subtraction (Catani, Seymour)
Introduce counterterm D which reproduces IR divergences of σreal:

σNLO =
R

dΦn (σB + αS [σvirt + DI ]) + αS

R

dΦn+1 [σreal − D] ,

with DI =
R

dΦ1 D

Cancel divergences analytically in σvirt + DI = σfin
virt

σreal − D is pointwise finite, numerically integrable



Obstacles at NLO

Two major sticking points at NLO:
Going beyond 2 → 3 processes

Large number of processes needed

Root cause: multi-leg (N ≥ 5) virtual integrations
Many scales (sij , MW , mH , mt, ...)

⇒ expressions become enormous

⇒ large numerical cancellations between terms

⇒ different integrals needed for each process

Many singular regions: soft, collinear, UV, thresholds, spurious singularities, . . .

⇒ singular subtractions not as well understood as for real emission contributions

Goal: automated, general method, as for real contributions
Also want a flexible approach to be ready for LHC analyses



Schematic of NLO virtual corrections

What we get from Feynman diagrams for 2 → N − 2:

Im
N =

∫

ddk
kµ1 . . . kµm

[(k + q1)2 − m2
1] . . . [(k + qN)2 − m2

N ]

Large number of integrals which aren’t independent

⇒ can reduce tensor structure, use recurrence relations to obtain a minimal set of basis
scalar integrals

{kµi} =
∑

ci
T +

∑

ci
B

• ci lengthy for large N ,
many scales

• ci ∼ 1/pa · pb

• Expressions for basis
integrals complicated

How much do we do analytically, how much numerically?



Automating NLO virtual corrections

Hybrid approach (Giele, Glover)

Reduce divergences to triangle integrals

Solve the remaining recurrence relations numerically

Completely avoid lengthy ci

Numerical approach (Nagy, Soper)

Define counterterms for UV, IR, collinear singularities graph-by-graph

Similar to dipole subtraction for real contributions

Integrate counterterms analytically, feed remainder directly to numerical integration

Other approaches suggested (Binoth et. al., . . . )

⇒ No implementation yet of any method



Merging parton showers with NLO



Merging parton showers with NLO

Experimentalists typically use shower MCs for predictions

Begin with:

⇒

MC generates shower for each line:

· · ·

Emissions controlled by Sudakov form-factor:

∆(x, xM ) = exp
`

−αS

R xM
x

dΦ Q(Φ)
´

Q(Φ) encodes behavior of the soft/collinear emissions

Typically use several approximations: no shower interference, angular ordering, . . .



Fixed order vs. shower MCs

Fixed order
+ Systematic expansion in αS

+ Based on exact matrix elements; describes hard/wide angle emissions well

− Relatively few partons in final state; no way to hadronize

− Not available beyond leading order for all processes; when available, tend to be spread
among different codes

Shower Monte Carlos
+ Generate many partons in the final state; access to hadronization

+ Many processes available in a few codes (HERWIG, PYTHIA)

− Doesn’t describe hard/wide angle emissions correctly

− Doesn’t systematically include higher order corrections ⇒ can’t do precision physics

⇒ Want the advantages of both approaches



Merging parton showers with NLO

Can’t just use NLO matrix elements in the MC

σNLO =
R

dΦn (σB + αS [σvirt + DI ]) + αS

R

dΦn+1 [σreal − D]

σreal = + · · ·

2

⇒ NLO corrections already include some gluon
emissions; double-counting

Incompatible with subtraction formalism for NLO corrections

D is the soft/collinear limit of σreal ⇒ has only n-body kinematics

Generate different showers for D, σreal

⇒ only cancel divergences after generating showers for each piece



MC@NLO

Use the MC itself as a counterterm (Frixione, Webber)

Q(Φ) encodes emission singularities ⇒ use it as an additional counterterm

Q(Φ), σreal coincide in singular phase space regions, so weights are finite

Also removes double counting of real emissions

• Smoothly matches soft/collinear (MC)
and hard (NLO) regions

• Works for most observables; MC not a local
counterterm for large-angle soft emissions



Progress in NNLO calculations



The NNLO revolution

Tremendous progress recently in NNLO computations
New computational techniques for two-loop integrals

Better understanding of singular structure of real radiation

Many new phenomenological results

Is NNLO necessary?
Reduced scale dependence

More partons ⇒ more realistic

Several concrete physical applications that require NNLO:

Higgs production at hadron colliders
Drell-Yan (luminosity monitor, PDF measurements)
Jet production at hadron colliders (PDFs, αS extraction)
Jet production at e+e− colliders

αS(MZ) = 0.1202 ± 0.0003(stat) ± 0.0009(sys) ± 0.0009(had) ± 0.0047(th)



Anatomy of a NNLO calculation

Virtual-Virtual

Real-Virtual

Real-Real



Two-loop integrals

Loop integrals satisfy recurrence relations arising from
Poincare invariance

Use integration-by-parts to derive (Chetyrkin, Tkachov)

I [ν1, ν2] =
R

dDk 1
[k2]ν1 [(k+p)2]ν2

Set
R

dDk ∂
∂kµ

kµ

k2(k+p)2
= 0

Derive I [1, 2] = −D−3
p2

I [1, 1]

Reduce to a small set of master integrals

Two things to do:
Reduce the integrals appearing in the matrix elements to master integrals

Calculate the master integrals



Recent virtual progress

Until recently, missing the master integrals

⇒ calculated by Smirnov, Tausk

New methods for solving systems of recurrence relations
Old-fashioned method: manipulate recurrence relations manually

⇒ avoids introducing unneeded integrals, but rapidly becomes difficult

Algorithmic method (Laporta):

Fully automated method of iteratively solving recurrence relations

Very general procedure applicable to a large class of problems

Efficient implementation now publicly available (Anastasiou, Lazopoulos)



Available two-loop amplitudes

Recently computed amplitudes for 2 → 2 processes:

Bern



Recent real progress

Currently the sticking point in completing NNLO calculations
Until recently, no direct calculation of e+e− → 2 jets at NNLO!

Tree graphs, so what’s the problem?

⇒ Understanding their singular structure when partons become unresolved
How do we extract their IR singularities before integrating over phase space?

Two ways to approach the problem:
(1) General method which aims for a complete understanding of IR structure

(2) Ask for information about restricted, "semi-inclusive" quantities



IR structure at NNLO

Understanding IR singularities at NNLO
Would allow for completely differential NNLO calculations

Extensions of the subtraction method to NNLO (Campbell, Glover; Kosower; Weinzierl;
Gehrmann-De Ridder, Gehrmann, Glover; Kilgore)

σNNLO =

Z

dΦn

“

σ(0) + αS

h

σ
(1)
v + D(1)

i

+ α2
S

h

σ
(2)
v + D(2)

i”

+αS

Z

dΦn+1

h

σ
(1)
r − D(1)

i

+ α2
S

Z

dΦn+2

h

σ
(2)
r − D(2)

i

Integrate the D(1,2) analytically, and the remainder numerically

D(2) must incorporate many limits: 3 collinear, 2 pairs collinear, 1 soft + 2 collinear, . . .

Alternative approach: Φn structure permits an automated extraction of IR divergences
(Binoth, Heinrich; Anastasiou, Melnikov, FP)

Derive a series in 1/ε with numerical coefficients
Don’t need any analytic integrations
Don’t need to consider singular limits separately



Semi-inclusive obervables at NNLO

Can adapt multi-loop techniques to phase space integrals
(Anastasiou, Melnikov)

σαβ→1...n ∝

Z

"

n
Y

i=1

ddqiδ
`

q2
i − m2

i

´

#

δ
`

pαβ − q1...n

´ ˛

˛Mαβ→1...n

˛

˛

2

Cutkosky rules: δ
`

q2
i − m2

i

´

⇒ 1
q2

i
−m2

i
−iε

− 1
q2

i
−m2

i
+iε

Maps phase space integrals ⇒ cut loop integrals

Can extend to differential quantities (Anastasiou, Dixon, Melnikov, FP)

Rapidity distributions (u = x1

x2

e−2Y ):

dσ

dY
∝ u

Z

"

n
Y

i=1

ddqiδ
`

q2
i − m2

i

´

#

δ

„

u −
p1 · Ph

p2 · Ph

«

δ
`

pαβ − q1...n

´ ˛

˛Mαβ→1...n

˛

˛

2

Make the same replacement for the rapidity constraint

⇒ Introduce a fictitious particle, whose mass-shell condition ⇔ phase-space constraint

In the fully differential limit, recurrence relations provide no information



Higgs production at NNLO

Several recent NNLO calculations
(Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven)

• 30 − 40% residual scale
dependence at NLO

• NLO corrections increase
LO result by 70 − 80%

⇒ Does the series converge?

• 20% residual scale
dependence at NNLO

• NNLO corrections are ≤ 30%



Drell-Yan rapidity distributions

First complete differential result at NNLO
(Anastasiou, Dixon, Melnikov, FP)

• NNLO corrections increase
NLO result by 3-5%

• Scale variations 3-6%
at NLO, < 1% at NNLO

• Drell-Yan now a high
precision probe of QCD



PDFs with NLO Drell-Yan

Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets

Scale variations render undistinguishable at NLO



PDFs with NNLO Drell-Yan

Alekhin parameterization fits only to DIS data; MRST fits to DIS, DY, jets

Scale variations render undistinguishable at NLO

Resolved at NNLO



Fixed target (E866)

Strong constraint on q̄ and x → 1 qval distribution functions

Reduced µ dependence at NNLO reveals discrepancy with data

⇒ Tune q̄ PDFs



Conclusions

Exciting prospects for precision physics at future colliders

Need theoretical work to fully utilize results

Much more to do before LHC start

Expect continued progress on several fronts
Practical implementations of algorithms for NLO calculations

Further development of NNLO subtraction scheme

First completely differential NNLO calculations for high-value observables (W, Z, H, . . .)

Not yet just turning the crank

⇒ room for new ideas!
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